CAFÉ COADO: ANÁLISE EXPERIMENTAL ATRAVÉS DA METODOLOGIA DoE

Anna Laura Brandão – 200127 Beatriz Sanches Pires – 201887 David Rodriguez Valera – 200144 Nathalia Granatti– 200719 Pedro Alberto Rena – 200408 Victória Campos – 200770

Prof. Eduardo Galvão Leite das Chagas

INTRODUÇÃO

O artigo propõe a aplicação da metodologia Design of Experiment (DoE) para planejar, analisar e orientar um experimento relacionado ao processo de filtragem do café.

Figura 1. Realização do experimento.

Fonte: Elaborado pelos autores.

Figura 2. Realização do experimento.

Fonte: Elaborado pelos autores.

OBJETIVOS

Entender a influência do tipo do filtro (papel ou pano), quantidade de café (1 colher ou 2 colheres), ambientação (com ou sem) e quantidade de água (200ml ou 300ml) no processo de produção do café coado.

METODOLOGIA

Foram realizados 16 experimentos com diferentes variáveis e níveis, sendo que, para cada uma das vezes:

- A água foi fervida até atingir 100°C;
- Foi utilizado café da marca União (tradicional, intensidade 8);
- Filtro de papel da marca Brigitta (número 102).

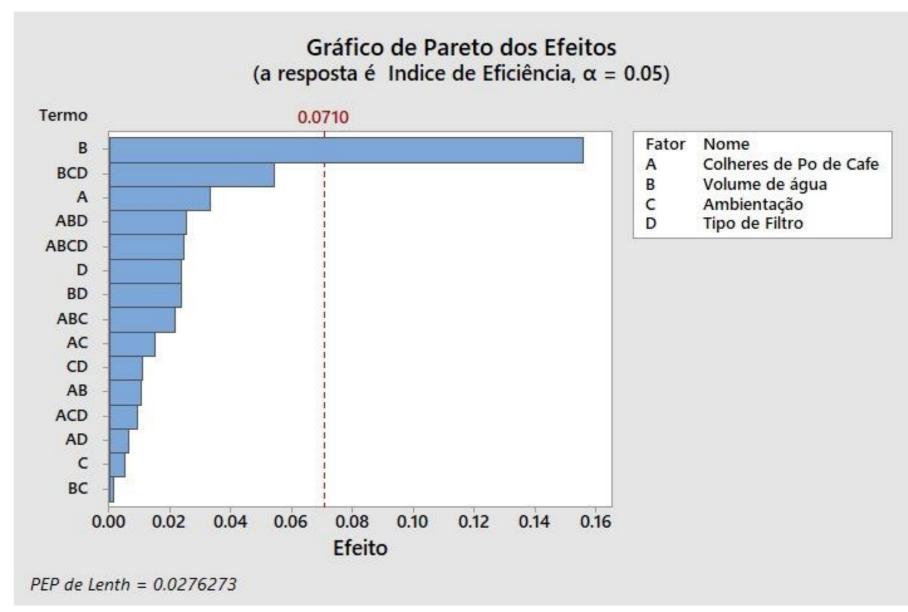
Figura 3. Planejamento experimental.

EXPERIMENTO	AMBIENTAÇÃO	QUANTIDADE DE PÓ DE CAFÉ	QUANTIDADE DE ÁGUA	TIPO DE FILTRO
7	-1	1	1	-1
4	1	1	-1	-1
3	-1	1	-1	-1
12	1	1	-1	1
11	-1	1	-1	1
14	1	-1	1	1
9	-1	-1	-1	1
16	1	1	1	1
13	-1	-1	1	1
2	1	-1	-1	-1
5	-1	-1	1	-1
8	1	1	1	-1
1	-1	-1	-1	-1
15	-1	1	1	1
6	1	-1	1	-1
10	1	-1	-1	1

Fonte: Elaborado pelos autores.

Figura 4. Legenda

COM AMBIENTAÇÃO	1			
SEM AMBIENTAÇÃO	-1			
10G DE PÓ DE CAFÉ	1			
20G DE PÓ DE CAFÉ	-1			
200ML DE ÁGUA	1			
300ML DE ÁGUA	-1			
filtro de pano	1			


Fonte: Elaborado pelos autores.

RESULTADOS E VALIDAÇÃO

Dado que variação de volume é diretamente proporcional a concentração, foi aferido o volume inicial e final em cada experimento.

Com o objetivo de encontrar a maior variação de volume utilizando o menor tempo, gerou-se o índice de eficiência $(\Delta V/t)$ em mL/s.

Figura 5. Gráfico de Pareto dos fatores relevantes no processo.

Fonte: Elaborado pelos autores.

A partir do gráfico de Pareto, demonstrado na figura 5, identificou-se que o volume de água é a único fator relevante para o processo.

CONCLUSÃO

Assim como descrito na literatura, o fator de maior relevância na concentração de café é o volume de água utilizado, sendo que a quantidade de pó de café, mesmo estando abaixo do valor crítico é a segunda variável mais impactante na eficiência.

As variáveis "ambientação" e "tipo de filtro" foram irrelevantes na variação de volume e consequentemente na concentração e na eficiência.

PEREIRA, R.G.F.A. et al. (2002). Efeitos do preparo por via úmida na qualidade do café.