

UP024TQN1 - Grupo 05

2024

GÉIS EMULSIFICANTES PARA LIMPEZA EFICIENTE DE TANQUES PETROQUÍMICOS: UMA ANÁLISE COMPARATIVA

Anna Júlia Melo Bergamasco – 222843 Anton Silva Almeida – 249075 Henrique Rodrigues Battochio – 212179

Lívia Isadora Sandre – 211033 Milena Bonassoli – 212192 Nicoly Inácio Cordon – 223776

Prof^a. Dr^a. Valeska Soares Aguiar

INTRODUÇÃO

O projeto busca resolver problemas de remoção e limpeza de resíduos oleosos em tanques industriais petroquímicos. Para a limpeza desses resíduos, é comum o uso de surfactantes que, em sua maioria, são derivados do petróleo. Devido à sua toxicidade, o uso desses surfactantes acarreta diversos problemas ecológicos, além de gerar acumulação e liberação de fosfatos (VELIOGLU, 2016; ALARGONI, 2015). O presente estudo compara a eficiência de três géis emulsificantes naturais na limpeza dos tanques petroquímicos nas emulsões A/O e O/A. Os géis analisados foram o gel de fécula de batata, goma xantana e gel de linhaça dourada, todos provenientes de fontes renováveis e biodegradáveis, visando melhorar a eficiência e segurança das operações, garantindo conformidade com regulamentações ambientais e reduzindo riscos de contaminação.

Figura 1. Emulsões analisadas.

Fonte: Elaborado pelos autores.

JUSTIFICATIVA

Promover a melhoria das práticas de limpeza de resíduos oleosos em tanques industriais, assegurando conformidade com regulamentações ambientais e reduzindo perdas de material e riscos de contaminação de forma sustentável, biodegradável e inovadora.

OBJETIVOS e ODS

Comparar a eficiência de géis emulsificantes naturais na limpeza de tanques petroquímicos; observar a estabilidade das emulsões; verificar a densidade e viscosidade de cada emulsão em determinadas condições; promover uma solução inovadora e sustentável. Além disso, busca-se atingir os Objetivos de Desenvolvimento Sustentável (ODS) abaixo:

Figura 2. Objetivos de Desenvolvimento Sustentável.

Fonte: Organização das Nações Unidas

ORÇAMENTO

Tabela 1. Orçamento do projeto

MATERIAIS	VALORES		
2 frascos de Óleo lubrificante	R\$47,50		
Goma Xantana	R\$8,50		
Linhaça	R\$8,50		
Amido	R\$5,76		
Tubos Falcon	Doado pela Unniroyal		
Esferas	Doado pela Unniroyal		
TOTAL	R\$117,76		

Fonte: Elaborado pelos autores.

RESULTADOS E VALIDAÇÃO

As medições iniciais de densidade e viscosidade foram feitas com um picnômetro e o método de Stokes, repetindo-as após uma semana. Para avaliar o comportamento térmico, as emulsões foram aquecidas a 50°C em banho-maria e o processo repetido após 7 dias. Em termos de estabilidade, a goma xantana foi o gel mais eficaz, proporcionando maior estabilidade às emulsões em temperatura ambiente, seguida pelo gel de linhaça e pelo gel de amido.

Tabela 2. Viscosidade e densidade dos géis.

Gel	1° dia		7° dia		Duração
	Viscosidade	Densidade	Viscosidade	Densidade	(dias)
Amido O/A	1,7064	0,9432	3,107	0,9577	1
Linhaça O/A	1,4211	0,9799	3,9223	0,9441	1
Goma Xant. O/A	2,5136	0,9531	17,4184	0,9308	5
Amido A/O	14,2328	0,9184	7,212	0,9515	3
Linhaça A/O	9,995	0,9169	4,6282	0,9281	4
Goma Xant. A/O	2,9659	0,9178	1,4182	0,9137	5
Gel	1° dia (50°C)		7° dia (50°C)		Duração
	Viscosidade	Densidade	Viscosidade	Densidade	(dias)
Amido O/A	2,5458	0,8433	1,4492	0,8155	0
Linhaça O/A	1,4766	0,8826	1,7898	0,8375	1
Goma Xant. O/A	1,6152	0,942	1,8508	0,8843	2
Amido A/O	8,043	0,8373	9,2098	0,7314	1
Linhaça A/O	13,4841	0,8003	9,5833	0,7845	2
3					

Fonte: Elaborado pelos autores.

Figura 2. Comparação da densidade dos géis.

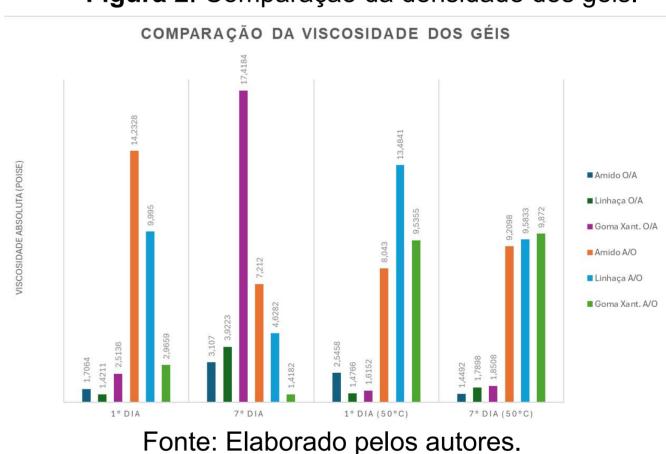
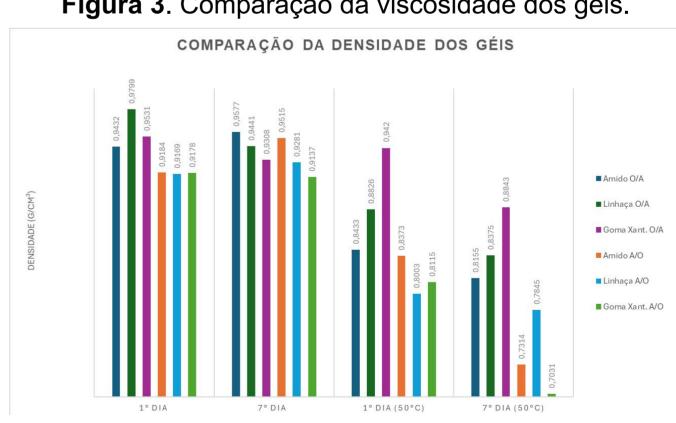



Figura 3. Comparação da viscosidade dos géis.

Fonte: Elaborado pelos autores.

CONCLUSÃO

Em suma, o projeto melhora as práticas de manutenção de tanques industriais, garantindo conformidade com regulamentações ambientais e reduzindo perdas de material e riscos de contaminação. A utilização de géis como agentes emulsificantes para limpeza industrial é uma inovação importante, oferecendo uma alternativa ecologicamente responsável aos métodos tradicionais de limpeza química e alinhada com os ODS.

AGRADECIMENTOS

