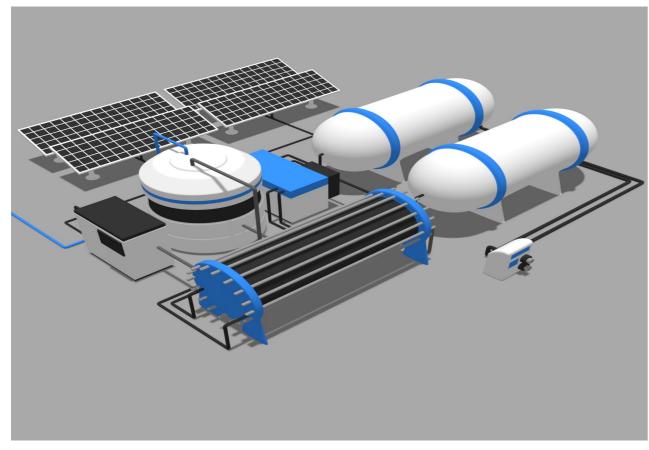


### UP026TQN1 - Grupo 03

2024

# INOVAÇÃO SUSTENTÁVEL: ELETRÓLISE DE ÁGUA COM SODA CÁUSTICA PARA HIDROGÊNIO VERDE


Ellen da Silva Paixão – 211355 Flávia Poso Galli – 210069 Giovanna Macedo Negoceki – 210371

Orientadora: Valeska S. Aguiar

# INTRODUÇÃO

Em um panorama global cada vez mais voltado para a sustentabilidade e redução das emissões de gases de efeito estufa, a produção de hidrogênio verde emerge como um pilar central para uma transição energética limpa. Utilizando a eletrólise da água, impulsionada por fontes renováveis como a energia solar, esta abordagem não só promove uma redução significativa nas emissões de carbono, mas também oferece uma alternativa energética adaptável a diferentes setores econômicos

Figura 1. Protótipo do Projeto.



Fonte: Elaborado pelos autores.

#### **JUSTIFICATIVA**

Surgiu-se a necessidade de explorar métodos inovadores de quantificação do hidrogênio, como o uso de provetas imersas em água. Essa abordagem oferece uma alternativa simplificada e eficaz, permitindo o monitoramento visual do volume de hidrogênio produzido durante a eletrólise.

#### **OBJETIVOS e ODS**

- Compreender qual condição possuí um melhor desempenho para a problemática, da maneira mais sustentável e econômica possível;
- Obter resultados significativos e inovadores.





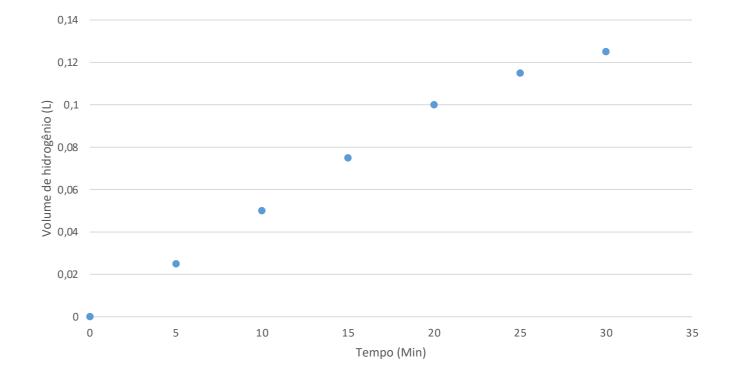




#### **ORÇAMENTO**

Tabela 1. Orçamento

| Item                          | Otimista (R\$) |          | Mais Provável<br>(R\$) |           | Pessimista (R\$) |           | Estimativa<br>Triangular (R\$) |           | Estimativa Beta<br>(R\$) |           |
|-------------------------------|----------------|----------|------------------------|-----------|------------------|-----------|--------------------------------|-----------|--------------------------|-----------|
| Painéis Solares Fotovoltaicos | R\$            | 609,00   | R\$                    | 1.218,00  | R\$              | 2.436,00  | R\$                            | 1.421,00  | R\$                      | 1.319,50  |
| Inversores                    | R\$            | 836,50   | R\$                    | 1.673,00  | R\$              | 3.346,00  | R\$                            | 1.951,83  | R\$                      | 1.812,42  |
| Sistemas de Montagem          | R\$            | 5.000,00 | R\$                    | 10.000,00 | R\$              | 20.000,00 | R\$                            | 11.666,67 | R\$                      | 10.833,33 |
| Cabeamento e Conectores       | R\$            | 82,61    | R\$                    | 165,21    | R\$              | 330,42    | R\$                            | 192,75    | R\$                      | 178,98    |
| Sistema de Armazenamento      | R\$            | 837,00   | R\$                    | 1.674,00  | R\$              | 3.348,00  | R\$                            | 1.953,00  | R\$                      | 1.813,50  |
| Fonte de Alimentação de 12V   | R\$            | 407,08   | R\$                    | 814,15    | R\$              | 1.628,30  | R\$                            | 949,84    | R\$                      | 882,00    |
| Eletrodos de Grafite          | R\$            | 43,50    | R\$                    | 87,00     | R\$              | 174,00    | R\$                            | 101,50    | R\$                      | 94,25     |
| Soda Cáustica (NaOH)          | R\$            | 7,50     | R\$                    | 15,00     | R\$              | 30,00     | R\$                            | 17,50     | R\$                      | 16,25     |


Fonte: Elaborado pelos autores.

Guilherme Felippe dos Santos Oliveira – 210233 Jaqueline Ramos dos Santos – 211019 João Vitor Seabra – 210062 Ryan Ramalho da Silva – 210426

## RESULTADOS E VALIDAÇÃO

Durante o experimento, foi produzido aproximadamente 0.125 L de hidrogênio em 30 minutos, comparado com o estimado teórico de 0.31 L em 45 minutos. Esta diferença, apesar de significativa, não impediu a validação dos objetivos, pois demonstrou que a adição de soda cáustica à solução eletrolítica efetivamente aumentou a condutividade iônica, um fator crucial para a eficiência do processo de eletrólise.

Figura 2. Pontos da curva do volume produzido de hidrogênio.



Fonte: Elaborado pelos autores.

### CONCLUSÃO

Ao término do projeto nota-se resultados satisfatórios, uma vez que é possível gerar hidrogênio verde com uma solução de água e soda cáustica.

Sugere-se o aumento do período de exposição da situação com os eletrodos, corrente voltaica e a solução, em um sistema fechado, para que se obtenha o resultado o mais próximo do teórico possível.

Dessa forma, a soda cáustica mostra-se eficaz ao aumentar a condutividade iônica e, por consequência, a eficiência da eletrólise, ao comparar-se o volume de hidrogênio produzido em laboratório com os valores esperados, baseados nas quantidades de água e soda cáustica utilizadas.

### **AGRADECIMENTOS**

Agradecimentos à Orientadora e Professora Valeska S. Aguiar, ao Coordenador de Engenharia Química João Guilherme e ao Técnico de Laboratório Caio Henrique