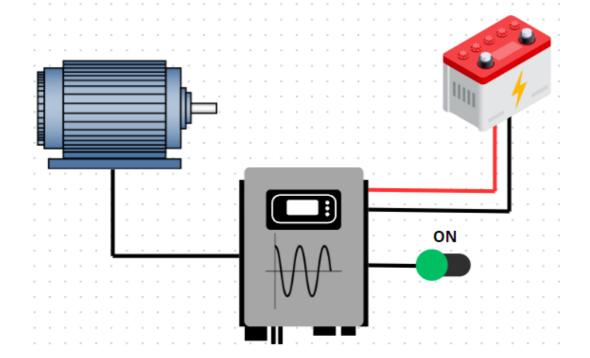


Tópicos Especiais de Engenharia CA220TAN1 – Grupo 07

2024

Controle de Velocidade em Motor de Indução Trifásico com PID


Rafael Lisboa – RA 200802 Thiago Blanco – RA: 200547 Leonardo Barreira – RA: 200747

Orientador: Lucas Nunes Monteiro

INTRODUÇÃO

A importância do controle PID, ressalta que a maioria dos controladores industriais adota o método Proporcional, Integral e Derivativo. Este método, conhecido pela sua eficácia e versatilidade, que possibilita o controle em diversos meios na indústria atual.

Figura 1. Sistema do projeto ilustrativo

Fonte: Elaborado pelos autores.

JUSTIFICATIVA

O projeto tem como base a simulação do funcionamento de um forno para compreender o controle PID, sendo capaz de ajustar a velocidade do motor com eficiência, precisão e controle, desde que a temperatura esteja dentro dos limites desejados.

OBJETIVOS e ODS

O objetivo do trabalho é projetar e implementar um sistema de controle PID para controlar a velocidade do motor de indução trifásico.

ORÇAMENTO

Tabela	П	Orçamento
labela		Orçanicillo

ltem	Quantidade	Custo Unitário	Fonte
Motor de Indução Trifásico (WEG)	1	R\$ 1.500,00	Mercado Livre
Inversor de Frequência (Siemens)	1	R\$ 13.800,00	Mercado Livre
Fonte de bancada DC	1	R\$ 500,00	Mercado Livre
Chave Seletora Alavanca	1	R\$ 20,00	Mercado Livre
Total		R\$15.820,00	

RESULTADOS E VALIDAÇÃO

A validação do sistema foi realizada através de testes físicos no laboratório. Os testes envolveram a operação do motor de indução trifásico controlado pelo inversor de frequência, sob condições simuladas de temperatura utilizando a fonte de bancada DC e confirmaram a eficácia do sistema de controle PID.

Figura 2. Instalação do projeto completo

Fonte: Elaborado pelos autores.

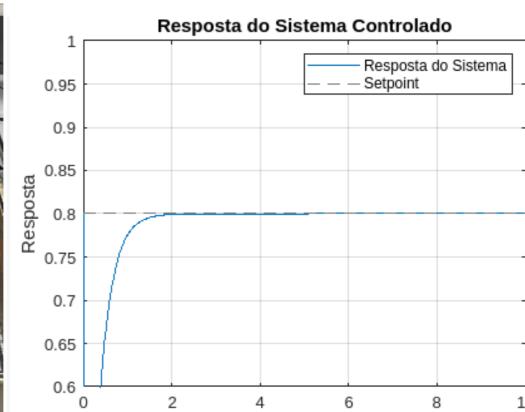


Figura 3. Simulação

Fonte: Elaborado pelos autores.

CONCLUSÃO

Utilizar um inversor para controlar a frequência do motor e fonte DC para simular um transmissor de temperatura. o motor apresentou 60 Hz quando a temperatura simulada estava a 0 graus (0 volts) e varie até o seu limite e Utilizar um inversor para controlar a frequência do motor e fonte DC para simular um transmissor de temperatura.

PERSPECTIVAS (OPCIONAL)

Integrar um Controlador Lógico Programável (CLP) e um sensor de temperatura ao sistema atual traria uma melhoria significativa. Isso permitiria simular um ambiente de forno de forma mais realista.

AGRADECIMENTOS

Gostaríamos de expressar nossa sincera gratidão aos professores Felipe Garcia Marques e Lucas Nunes Monteiro, por suas orientações e apoios.