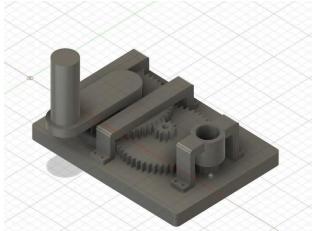
Bike Charge: Gerando energia sustentável


Enzo Yamaoca Borlini – RA: 236774 Giovanne Vieira de Queiroz – RA: 235969 Gustavo Camargo de Oliveira– RA: 236024 João Pedro da Silva Ramos – RA: 234911 Lucas Marino Tomazeli – RA: 235798 Lucas Rodrigues Paifer – RA: 236576

Orientador Prof. Me. Marcos Vinícius Ribeiro

INTRODUÇÃO

Este projeto tem como objetivo principal desenvolver um sistema sustentável e eficiente que utilize a energia cinética gerada pelo movimento de uma bicicleta para carregar um Power Bank. O foco será na concepção, implementação e teste de um dispositivo capaz de converter a energia mecânica produzida durante o pedal em energia elétrica armazenada em baterias portáteis, visando promover a mobilidade urbana sustentável e oferecer uma fonte de energia alternativa para dispositivos eletrônicos.

Figura 1. Foto do prótotipo

Fonte: Os próprios autores, 2024

JUSTIFICATIVA

A Bike Charge visa resolver problemas como dependência de energia não renovável e promover a mobilidade urbana sustentável, oferecendo uma geração de energia limpa.

OBJETIVOS e ODS

O projeto surge da necessidade de abordar questões relacionadas à mobilidade urbana sustentável e à busca por fontes alternativas de energia, alinhando-se com a Norma 7 dos Objetivos de Desenvolvimento Sustentável. Já os objetivos são criar um dispositivo que capte energia cinética e converter ela em energia elétrica.

ORÇAMENTO

Tabela 1 – Orçamento do projeto					
ITEM	LOJA 1	LOJA 2	PREÇO 1 (R\$)	PREÇO 2 (R\$)	VALOR MÉDIO (R\$)
Dínamo	Mercado Livre	AliExpress	127,5	70,5	99
Bateria 12V	Mercado Livre	AliExpress	35	32	33,5
Arduino Uno	Mercado Livre	AliExpress	45	51	48
Sensor de Tensão	Robocore		4,9		4,9
Jumper	Robocore		7,9		7,9
Regulador de Tensão	Robocore		2,5		2,5
Display OLED	Robocore		19,9		19,9
CUSTO TOTAL					215,7

Fonte: Próprio autor, 2024.

RESULTADOS E VALIDAÇÃO

Como procedimento de validação foi perguntado a 6 pessoas que principalmente participam de maratonas de ciclismo o que elas achavam da ideia de ter um Power Bank que é carregado pela energia gerada ao pedalar a bicicleta. Foi observado que o modelo em escala cumpre o objetivo desejado, convertendo a energia cinética gerada pelo movimento do dínamo em energia elétrica. Por meio do Arduino, os dados são exibidos no visor, sabendo-se assim a quantidade de energia do sistema, bem como a tensão energia armazenada para outra bateria, nesse caso, o Power Bank.

Figura 2. Validação com entrevistas

Fonte: Os próprios autores, 2024.

Fonte: Os próprios autores, 2024.

CONCLUSÃO

Através do desenvolvimento de um sistema sustentável, conseguimos converter a energia cinética gerada pelo movimento de uma bicicleta em energia elétrica armazenada em um Power Bank. Este sistema mostrou-se funcional e eficaz, destacando-se como uma solução para promover a mobilidade urbana sustentável e oferecer uma fonte alternativa de energia para dispositivos eletrônicos.

PERSPECTIVAS

Os principais pontos de melhoria para o projeto é tornar o sistema de recarregamento do Power bank em um sistema a prova d'água e resistente a quedas e batidas. Além de tentar aumentar a voltagem que recarrega o Power bank para tornar o sistema mais fluido e satisfatório.

AGRADECIMENTOS

Agradecemos ao Prof. Me. Marcos Vinícius Ribeiro por sua orientação essencial, aos membros do grupo pelo trabalho dedicado, a Faculdade de Engenharia de Sorocaba (FACENS) e aos ciclistas pelo feedback valioso.