

UP001TIM2 – Grupo 04

2024

BUEIRO INTELIGENTE

Ana Laura Biagio de Oliveira – 248706 Bruno Souza Mora – 248871 João Ricardo Diniz Barbanti – 249158 Marcelo Buzza Leoz – 248762 Rui Anderson Cruzeiro Prado Pereira – 248665

ORIENTADOR: Rosana Fernandes Antonio

INTRODUÇÃO

O Bueiro Inteligente visa reduzir alagamentos urbanos instalando grades de contenção de resíduos e sensores de volume sólido nos bueiros. Este sistema previne obstruções, assegura o fluxo de água e minimiza danos causados por inundações. Além disso, contribui para as ODS 6 e 11 ao reduzir doenças de veiculação hídrica e melhorar a mobilidade urbana e a qualidade de vida dos moradores de áreas de depressão, que são os mais afetados.

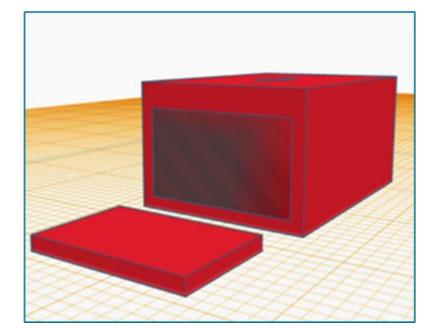


Figura 1. Protótipo Tinkercad.

Fonte: Bruno Souza.

JUSTIFICATIVA

O Bueiro Inteligente conta com sensores de volume sólido que enviam alertas automáticos quando a grade atinge 75% de sua capacidade. Comparado a soluções tradicionais, como limpeza com sucção a vácuo e filtros, o Bueiro Inteligente não exige gastos constantes e permite intervenções mais eficientes.

Apesar das oportunidades geradas pela urbanização crescente e má gestão de resíduos, novos projetos enfrentam desafios como custos elevados e resistência burocrática.

PROPOSTO DE SOLUÇÃO

A proposta visa aprimorar a drenagem urbana para prevenir alagamentos causados pela obstrução de dispositivos como bueiros. A solução envolve instalar grades de contenção de resíduos nos bueiros, complementadas por sensores de volume sólido. Esses sensores alertam quando a grade está quase cheia, permitindo uma intervenção proativa para desobstruir os bueiros e garantir o fluxo eficiente de água, reduzindo danos e transtornos por inundações.

OBJETIVOS

O objetivo do projeto é criar um protótipo que filtre lixo da água dos bueiros e alerte o sistema de limpeza quando um bueiro estiver cheio. Para isso, será necessário definir as escalas e recursos, como placas Arduino e sensores volumétricos. O projeto incluirá fases de programação para que os sensores enviem alertas de alto volume de lixo, seguidas de montagem virtual e testes, até a conclusão do modelo virtual.

ORÇAMENTO

Ferramentas		Quantidade	Baixo Custo	Médio Custo	Alto Custo	Fonte	Custo Triangular	Custo Beta
Estruturais	Arame	1kg	R\$ 13,00	R\$ 34,09	R\$ 42,50	Arcelormittal	R\$ 29,86	R\$ 31,98
	Caixa de isopor	1	R\$ 26,95	R\$ 27,90	R\$ 37,90	Lojas Benis	R\$ 30,92	R\$ 29,41
Eletrônicos	Sensor ultrassônico	1	R\$ 12,99	R\$ 13,75	R\$ 18,00	Mercado Livre	R\$ 14,91	R\$ 14,33
	ESP32	1	R\$ 45,50	R\$ 47,90	R\$ 63,32	Mercado Livre	R\$ 52,24	R\$ 50,07
	Fio fêmea/fêmea	20	R\$ 5,60	R\$ 6,56	R\$ 8,90	Eletrogate	R\$ 7,02	R\$ 6,79

Tabela 1. Orçamento.

RESULTADOS E VALIDAÇÃO

O projeto tem como objetivo desenvolver um protótipo capaz de identificar quando um bueiro atinge sua capacidade máxima e enviar alertas via WhatsApp. Testes preliminares mostraram que o sensor pode detectar objetos como garrafas ou sacos de lixo e enviar alertas com sucesso, conforme demonstrado na figura. Além disso, outra meta é implementar um sistema de filtragem para remover o lixo da água que passa pelo bueiro, para isso, é necessário um filtro resistente à água corrente. Testes realizados com 5 litros de água de uma queda de 1 metro, repetidos três vezes, demonstraram que o filtro permaneceu intacto, confirmando sua eficácia.

Figura 2. Alerta via Whatsapp.

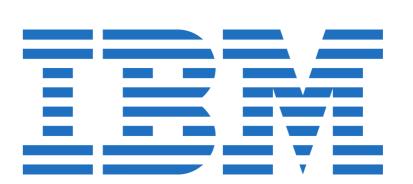
Fonte: João Ricardo.

HC-SR04

DESP32

ESP32

Figura 3. Sensor ultrassônico.


Fonte: João Ricardo.

CONCLUSÃO

A implementação de um sensor de distância ultrassônico nos bueiros oferece uma solução inovadora para evitar alagamentos urbanos, fornecendo dados em tempo real sobre as condições do bueiro e permitindo respostas rápidas. Apesar de um problema com a caixa protetora, o projeto funcionou conforme o planejado, incluindo a programação, o circuito e o envio de alertas via WhatsApp.

O projeto proporcionou aprendizado significativo em IoT, montagem de estruturas físicas e uso de ferramentas de gestão e organização. Para futuros projetos, recomenda-se criar circuitos com baterias próprias ou simular a energia com fiação, evitando a necessidade de troca constante de baterias.

AGRADECIMENTOS

