FLOODGUARD

Guilherme Savassa Bernal - RA: 210029 Jhonatan Frossard Novais - RA: 200304 Julio Cesar Bonow Manoel - RA: 210375

Núbia Stanquini - RA: 190041

Rafael Henrique Ramos - RA: 210432 Vitor Augusto Pereira Vieira - RA: 210618

Prof^o. Lucas Nunes Monteiro

INTRODUÇÃO

As enchentes urbanas representam um desafio crescente em muitas cidades devido às mudanças climáticas e à intensificação das chuvas. O projeto FloodGuard visa mitigar esses impactos por meio de um sistema de monitoramento de rios e lagos. Utilizando de sensores ultrassônicos, câmeras Wi-Fi, e tecnologia IoT, o FloodGuard fornece dados a cada 5 segundos sobre os níveis de rios e lagos, permitindo uma resposta rápida e eficaz. Esta solução não apenas protege a infraestrutura e as comunidades, mas também contribui para a adaptação às mudanças climáticas.

Figura 1. Protótipo funcionando.

JUSTIFICATIVA

O projeto FloodGuard foi criado para alertar sobre possíveis enchentes no local onde o sistema está instalado. De modo a agilizar os processos de evacuação e mitigar os danos.

OBJETIVOS e ODS

Nosso grupo tem como objetivos desenvolver uma solução eficiente para monitorar e prever enchentes urbanas.

ODS trabalhadas são:

ODS 11: Cidades e Comunidades Sustentáveis; ODS 13: Ação Contra a Mudança Global do Clima;

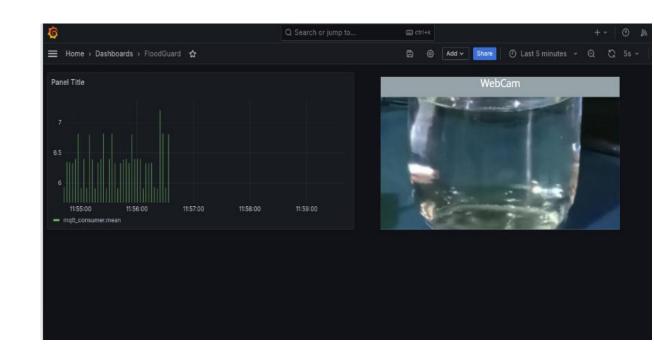
ODS 9: Indústria, Inovação e Infraestrutura.

ORÇAMENTO

Tabela 1. Orçamento do Projeto Real a ser aplicado.

ORÇAMENTO						
Qntd	Item	Preço I	Preço Unit.		Total	
1	Raspberry Pi 4 - 4GB	R\$	589,90	R\$	589,90	
	Ultrasonic level transmitter					
1	LST200	R\$	3.890,67	R\$	3.890,67	
2	Camera OEM com visão Noturna 1080p	R\$	135,00	R\$	270,00	
6	Painel Solar Fotovoltaico 20W - Resun RSM020-P	R\$	89,00	R\$	534,00	
1	Controlador de Carga 100A 12/24V	R\$	104,00	R\$	104,00	
6	Original	R\$	17,90	R\$	107,40	
1	Cabos em Geral	R\$	50,00	R\$	50,00	
1	Caixa Patola Impermeável	R\$	70,00	R\$	70,00	
4	Prensa Cabos	R\$	4,00	R\$	16,00	
		Total		R\$	5.631,97	

RESULTADOS E VALIDAÇÃO


O processo de validação e calibração do protótipo foram feitos utlizando de uma recipiente e tendo seu volume medido externamente com uma régua e comparada com o valor lido pelo sensor, conforme fosse colocando e retirando a água, o sensor era capaz de ler essas pequenas variações.

Desse modo, o resultado do protótipo foi satisfatório, de modo a permitir entender e simular o que pode acontecer na prática com o projeto real, sendo necessário alguns

rigura 2. Método de Calibração

Figura 3. Dashboard

CONCLUSÃO

Com base nos resultados obtidos pelo protótipo, concluímos que o projeto tem o potencial de ser aplicado em escala real, monitorando rios e lagos. Além disso, os sensores ultrassônicos coletam dados de maneira consistente, que são visualizados em um dashboard que podem ser acessados a qualquer momento, de modo que, com esses dados, é possível agilizar as ações em resposta às enchentes.

PERSPECTIVAS

As perspectivas do FloodGuard incluem expandir sua implementação, integrar tecnologias mais avançadas, como visão computacional, e otimizar sensores para condições extremas. Outro ponto de melhoria é aprimorar as notificações via aplicativo sobre as condições dos rios e lagos locais.

AGRADECIMENTOS

Agradecemos a Facens e o Professor Lucas Nunes Monteiro pela oportunidade e orientação durante o decorrer do projeto.