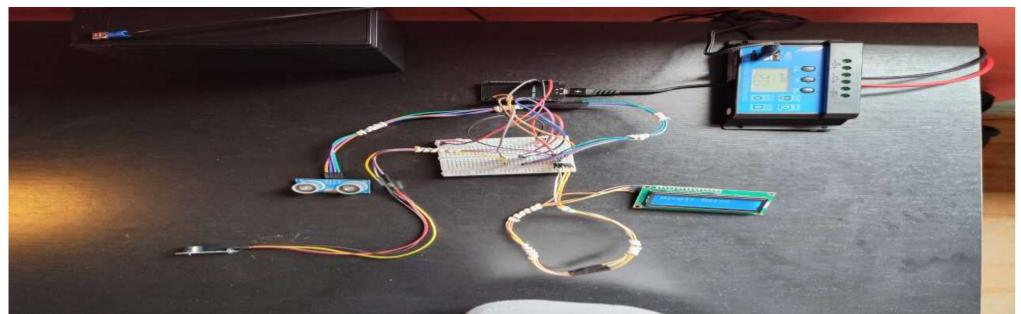


UP001TIN2 - - Grupo 04

2024

Tecnologia de Detecção de Alagamentos: Um Sensor para a Segurança Urbana

Álvaro Bruce Mallio - 248327 Diego Carvalho de Goes- 248345 Gustavo do Nascimento Ferreira- 249018


Rafael Lourenço Rocha de Oliveira – 247822 Rafael Ryuichi Mizobuchi – 248982

Prof. Rodrigo Henrique Geraldo

INTRODUÇÃO

Nos últimos anos, os eventos climáticos extremos têm se tornado cada vez mais frequentes e intensos, resultando em um aumento significativo nos desastres naturais, como enchentes e alagamentos. Nosso protótipo seria instalado em cidades que estão vulneráveis com alagamentos contantes. O projeto envolve um sensor de alagamento que mede o nível ´d'água ajudando os moradores próximos a se prepararem para as enchentes, displays também serão usados no auxílio de alerta

Figura 1 sensor em funcionamento.

Fonte: Grupo 4 UPX

JUSTIFICATIVA

Análise de Mercado: Nosso grupo possui integrantes com conhecimento técnico em eletrônica e automação industrial porem moramos em cidades distantes, dificultando nosso encontro para discutir sobre o projeto. A nossa oportunidade seria que a prefeitura de Sorocaba e região está com dificuldades em combater os alagamentos frequentes causados pela chuva. Nossa ameaça e a simplicidade suscetível a imitação de outros atores no mercado

Análise da concorrência: As principais concorrências destes projeto são os sistemas de monitoramento de enchentes já existentes, do governo local e empresas privadas

Proposta de Valor: Nós vamos entregar ao público um sensor que mede o nível de água alertando a população local dos riscos de enchentes, trazendo mais segurança aos moradores

PROPOSTA DE SOLUÇÃO

A proposta de solução seria instalar um sistema de sensores capazes de monitorar o nível de água do rio e alertar a comunidade local do risco iminente de alagamentos por meio de alertas sonoros e displays. Assim a população pode se preparar para os dilúvios

OBJETIVOS

Nosso objetivo e desenvolver um sistema de sensores que monitoram o nível de água dos rios e que alertem os cidadãos dos riscos de enchentes por meio de alarmes e displays.

ORÇAMENTO

Tabela 1. Tabela do orçamento

Material	Descrição	Quantidade	Valor(R\$)	Fonte de consulta	Data de consulta
Painel Placa Solar Fotovoltaica 20w	Utilizada para alimentar pequenos dispositivos em protótipos	1	R\$ 128,00	Mercado Livre	24/abr
Esp32 Doit Devkit com Esp32-wroom-32	Microcontrolador normalmente usados para protótipos	1	R\$ 46,70	Mercado Livre	24/abr
Controlador Automático de Carga Solar Pwm Lcd 10a	Regula a carga de baterias solares, otimizando a	1	R\$33,11	Mercado Livre	24/abr
Bateria 12v	Armazena energia para alimentar sistemas elétricos de baixa voltagem	1	R\$ 64,99	Mercado Livre	24/abr
Display Tela Lcd 16x2 1602 Backlight Verde Arduino	É um dispositivo para a apresentação de informação, de modo visual e/ou táctil	1	R\$ 37,90	Mercado Livre	30/abr
Sensor Ultrassônico Hc-sr04	Mede distâncias utilizando ondas sonoras, ideal para projetos de detecção	1	R\$ 19,00	Mercado Livre	24/abr

Fonte: Excel

RESULTADOS E VALIDAÇÃO

No nosso projeto foram usados os seguintes materiais: Bateria 12v, display Tela Lcd 16x2 1602 Blacklight Verde Arduino, Sensor Ultrassônico Hc-sr04. Primeiro nós fizemos a montagem dos componentes no simulador Tinkercad e montamos a programação para o sensor funcionar, depois de muitas tentativas nós conseguimos passar a programação para o Arduino. O sensor funciona por energia fotovoltaica enquanto está de dia, quando não há nenhuma luz ou fica de noite o sensor e alimentado pela bateria 12v.

Figura 2. Sensor de alagamento.

Fonte: Grupo 4 UPX

Tabela 2. Tabela	d	е
informações.		
80.0	Valor	Va

Parâmetro	Descrição	Vaior Medido	Esperado	Emo(%)	Comentário
Precisão do Nivel de Água	Diferença entre o nivel de água medido pelo sensor e o nivel real	0,95 m	1,00 m	5%	Dentrodolimite de eno aceitável
Tempo de Resposta	Tempo necessário para o sensor detectar e reportar uma mudançá no nivel de água	2 segundos	⊊\$ segundos	,	Resposta rápida conforme esperado
Acance de Detecção	Albura máxima que o sensor consegue medir	3,5 m	3,5 m	(A	Conformidade total com a especificação
Consumo de Energia	Quantidade de energia consumida pelo sensor durante a operação continua	1,2W	≤1,5W -		Corsumo eficiente
Adoustica e Durabilidade	Tempo de funcionamento continuo em condições extremas (simulação de ambiente alagado)	48horas	48 horas	DH.	Desempenho consistente em ambiente de teste
Frequência de Falsos Positivos	Número de alertas incorretos emitidos pelo sensor em um período de 24 horas	1	<u> 52</u> -		Baixa taxa de falsos positivos

Fonte: Excel.

CONCLUSÃO

O desenvolvimento do sensor de alagamento proposto neste projeto mostrou-se uma iniciativa valiosa na busca por soluções tecnológicas que possam mitigar os impactos de desastres naturais em áreas urbanas. A partir dos testes realizados, foi possível verificar que o sensor apresenta uma precisão satisfatória na medição dos níveis de água, um tempo de resposta adequado para alertas precoces e um consumo de energia eficiente, atendendo aos critérios estabelecidos inicialmente.

AGRADECIMENTOS

Responsáveis pelo projeto:

Álvaro Bruce Mallio Diego Carvalho de Goes Gustavo do Nascimento Ferreira Rafael Lourenço Rocha de Oliveira Rafael Ryuichi Mizobuchi