

UP025TQN1 – Grupo 01

2023

PROCESSO DE SECAGEM POR CONVECÇÃO, RESÍDUO DO MINÉRIO DE BAUXITA

André Seno Gomes – 200372 Ângelo Honório de Oliveira – 203242 Bianca Caroline Granado – 180616 Carlos Eduardo de Borba – 224278

Valeska Aguiar

Fernando Yuri Nishi – 171208 Lílian Feitosa Martinez Eiras – 210226 Matheus Vataro César - 211150 Roberto Martins Teixeira Júnior - 210900

INTRODUÇÃO

Para a obtenção do alumínio, é necessário o processamento do minério de bauxita, porém, subproduto torna a bauxita um subsequente. Esse processo desempenha um papel central na indústria do alumínio, contribuindo para a produção de um dos metais mais versáteis e amplamente utilizados em todo o mundo. A secagem visa remover a umidade presente no resíduo para facilitar o armazenamento e consequentemente e o transporte para outros processos que necessitem deste produto.

JUSTIFICATIVA

Este projeto visa dimensionar o melhor método para secagem do mineiro de bauxita residual do processo de obtenção do hidróxido de alumínio.

OBJETIVOS

O processo escolhido foi secagem por convecção o que garante alta diminuição da umidade por um alto volume de material, nele contamos com diversos secadores industriais que possibilitam a secagem de grandes quantidades em pouco tempo,

ORÇAMENTO

	Valor	Fornecedor
Tubo de aço galvanizado	R\$ 125,55	Usiminas
redondo 50,8 mm (2") x		
1,55 mm (chapa 16) x 600		
mm		
Secador	R\$ 450.000,00	Fezer
Total	R\$ 450.125,55	

Fonte: Elaborado pelos autores.

RESULTADOS E VALIDAÇÃO

Foi preparado uma amostra de 48,336 g de amostra, pré-aquecendo a estufa a 180 graus, após atingir a temperatura necessária a amostra foi introduzida e deixada em aquecimento por 10 minutos, depois retirada, aguardados 5 minutos em repouso mediu-se a massa, procedimento repetido 7 vezes.

Tabela 1. Dados experimentais.

Medições	Tempo	Massa	Xbs (%)	X médio	ΔX (%)	Δt (min)	ΔΧ/Δt
	(min)	amostra		(%)			(%/min)
		(g)					
1	0	16,176	0,316	0,000	0,316		
2	10	15,493	0,260	0,288	-0,028	10	0,0028
3	20	12,790	0,040	0,150	-0,110	10	0,0110
4	30	12,442	0,012	0,026	-0,014	10	0,0014
5	40	12,357	0,005	0,008	-0,003	10	0,0003
6	50	12,315	0,002	0,003	-0,002	10	0,0002
7	60	12,295	0,000	0,001	-0,001	1390	0,0000

Fonte: Elaborado pelos autores.

CONCLUSÃO

O modelo apresentado mostrou-se viável no que se diz respeito à problemática, porém sem certas informações, como a planta do site industrial, não é possível determinar ao certo a sua viabilidade econômica, pois sem o valor correto de investimento, não e possível calcular o pay-back.

AGRADECIMENTOS

